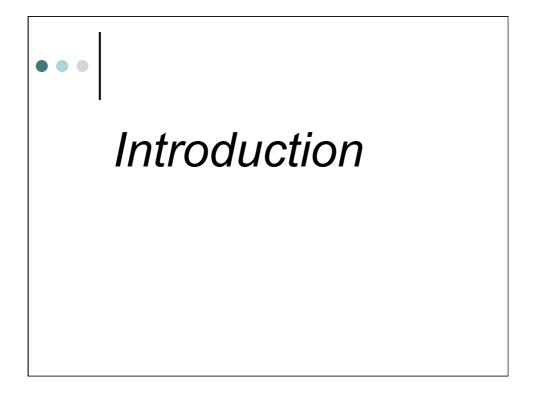
EE421/521 Image Processing

Lecture 9
IMAGE SEGMENTATION



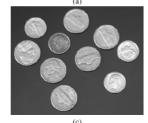
Segmentation

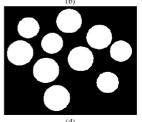
- Partitioning image into homogeneous regions with respect to some characteristic
 - Gray level, texture, color, motion, context (foreground, background)
- o Useful mid-level representation of an image
- Facilitates computer vision tasks

• • •

Examples

- (a) A hard image to segment due to uneven lighting, projected shadows, and occlusion among objects
- (b) Grayscale of (a). Segmentation of this image is even harder (even impossible with some methods)
- (c) An image easy to segment.





By Oge Marques

Copyright © 2011 by John Wiley & Sons, Inc. All rights reserved.

Applications

- Object recognition
- Image annotation
- Video summarization
- Background subtraction
- Medical Imaging
- Image compression

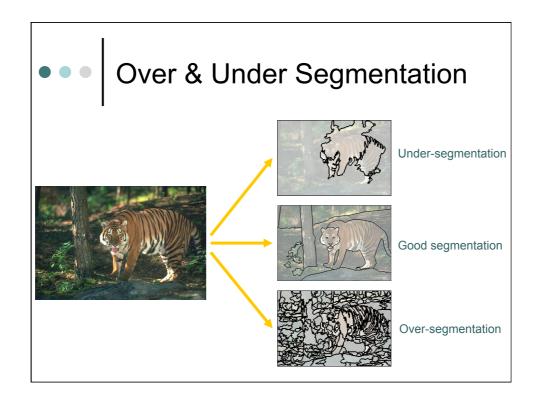
Regions and Edges

- Regions are found based on SIMILARITIES between values of adjacent pixels
 - We could "trace" regions to obtain edges

- Edges are found based on DIFFERENCES between values of adjacent pixels
 - We could "fill" closed contours to obtain regions

• • Strategies

- Top-down segmentation
 - Pixels belong together because they come from the same object
- Bottom-up segmentation
 - Pixels belong together because they look similar



• • Segmentation Techniques

- Intensity-based (non-contextual): based on pixel distributions (i.e., histograms).
- Region-based (contextual): rely on adjacency and connectivity criteria between a pixel and its neighbors.
 - Region growing
 - Region splitting

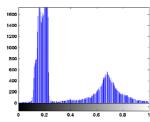
9

• • •

Intensity-Based Segmentation

Intensity-Based Segmentation

 Rely on pixel statistics (histogram properties) to determine which pixels belong to "foreground" objects and which pixels should be labeled as "background."



By Oge Marques

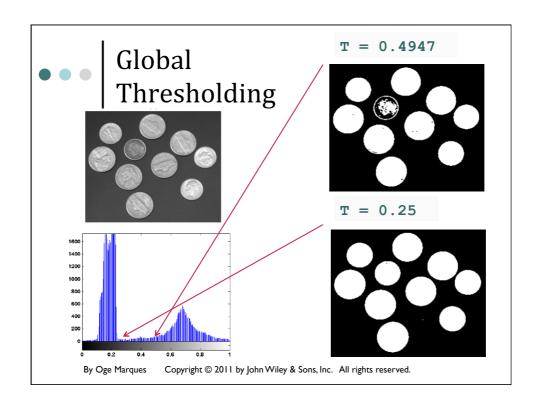
Copyright © 2011 by John Wiley & Sons, Inc. All rights reserved.

• • •

Image Thresholding

• This is usually performed by comparing each pixel intensity against a reference value (threshold) and replacing the pixel with a value (say 1 or 0) that means "foreground" or "background" depending on the outcome of the comparison.

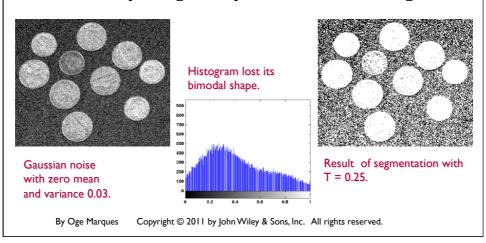
$$g(x,y) = \begin{cases} 1 & \text{if } f(x,y) > T \\ 0 & \text{otherwise} \end{cases}$$





• • • Image Thresholding and Noise

• Even easy images may become hard to segment



Local Thresholding

- Threshold blocks of pixels, one block at a time.
 - If the blocks that are too small: large computational cost.
 - If the blocks that are too large: results may not be substantially better than the ones obtained with global thresholding.

By Oge Marques Copyright © 2011 by John Wiley & Sons, Inc. All rights reserved.

Local Thresholding Example

Global thresholding Local thresholding

By Oge Marques

Copyright © 2011 by John Wiley & Sons, Inc. All rights reserved.

Limitations of Thresholding

- o Operates on each image pixel independently.
 - Pixels must have similar values.
- Spatial coherency cannot be satisfied.
 - Pixels do not have to be connected.

Region-based Segmentation

Region-based Segmentation

- A pixel cannot be considered a part of an object based solely on its gray value.
- Incorporates measures of connectivity among pixels in order to decide whether those pixels belong to the same region (or object).

By Oge Marques

Copyright © 2011 by John Wiley & Sons, Inc. All rights reserved.

Region-Based Segmentation

Divide an image *I* into *n* regions R_1 , R_2 , ..., R_n such that:

- 1. $\bigcup_{i=1}^{n} R_i = I$
- 2. R_i is a connected region, $i = 1, 2, \dots, n$.
- 3. $R_i \cap R_j = \emptyset$ for all i and j, $i \neq j$.
- 4. $P(R_i) = \text{TRUE for } i = 1, 2, \dots, n.$
- 5. $P(R_i \cup R_j)$ = FALSE for any adjacent regions R_i and R_j .

where $P(R_i)$ is a logical predicate defined over the points in set R_i and \emptyset is the empty set.

By Oge Marques Copyright © 2011 by John Wiley & Sons, Inc. All rights reserved.

• • •

Region-Based Segmentation

- Logical predicates (also called *homogeneity criteria*) include:
 - Local mean relative to global mean: the average intensity in a region is significantly different than the average gray level in the whole image.
 - Local standard deviation relative to global mean: The standard deviation of the pixel intensities in a region is less than a small percentage of the average gray level in the whole image.
 - Variance: At least a certain percentage of the pixels in a region are within two standard deviations of the local mean.

By Oge Marques Copyright © 2011 by John Wiley & Sons, Inc. All rights reserved.

Region Growing Algorithm

```
Let f(x,y) be the input image
     Define a set of regions R1, R2, \dots, Rn, each consisting of a
               single seed pixel
     repeat
        for i = 1 to n do
           for each pixel p at the border of Ri do
              for all neighbors of p do
                 Let (x,y) be the neighbor's coordinates
                 Let Mi be the mean gray level of pixels in Ri
                  if the neighbor is unassigned and
                           |f(x,y) - Mi| <= Delta then
                     Add neighbor to Ri
                    Update Mi
                  end if
              end for
           end for
        end for
     until no more pixels can be assigned to regions
By Oge Marques
              Copyright © 2011 by John Wiley & Sons, Inc. All rights reserved.
```

• • •

Region-Growing Example

$$P(R_i) = \left\{ \begin{array}{ll} \text{TRUE} & \text{if } |f(x,y) - \mu_i| \leq \Delta \\ \text{FALSE} & \text{otherwise} \end{array} \right.$$

6	7	7	6	5
7	7	8	6	5
5	5	6	7	6
0	1	2	0	1
1	0	0	2	0

Seed pixels

6	7	7	6	5
7	7	8	6	5
5	5	6	7	6
0	1	2	0	1
1	0	0	2	0

Results after first iteration, delta = 3

6	7	7	6	5
7	7	8	6	5
5	5	6	7	6
0	1	2	0	1
1	0	0	2	0

Results after second iteration

Region Growing Limitations

- Significantly different results may be obtained when switching between 4-connectivity and 8-connectivity criteria.
- Segmentation results are sensitive to the choice of logical uniformity predicate.
- The number of seeds provided by the user may not be sufficient to assign every pixel to a region, or some may belong to the same region.

By Oge Marques Copyright © 2011 by John Wiley & Sons, Inc. All rights reserved.

• • •

Region Splitting and Merging

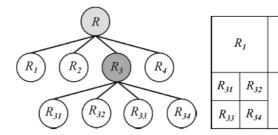
- Start from the entire image and partition (split) it into smaller sub-images until each resulting region is considered homogeneous by some criterion.
- Merge two or more adjacent regions into one region if they satisfy the homogeneity criterion.

By Oge Marques Copyright © 2011 by John Wiley & Sons, Inc. All rights reserved.

Region Splitting and Merging

 R_2

 R_4



By Oge Marques Copyright © 2011 by John Wiley & Sons, Inc. All rights reserved.

• • •

Region Splitting and Merging

- 1. Define a logical uniformity predicate $P(R_i)$.
- 2. Compute $P(R_i)$ for each region.
- 3. Split into four disjoint quadrants any region R_i for which $P(R_i)$ = FALSE.
- 4. Repeat steps 2 and 3 until all resulting regions satisfy the uniformity criterion, i.e., $P(R_i) = \text{TRUE}$.
- 5. Merge any adjacent regions R_j and R_k for which $P(R_j \cup R_k)$ = TRUE.
- 6. Repeat step 5 until no further merging is possible.

By Oge Marques Copyright © 2011 by John Wiley & Sons, Inc. All rights reserved.

Project 2.4

Segmentation

Due 05.01.2014

29

Problem 2.4 Segmentation via Region Growing

- 1. Select an image and display it.
- Guess the number of segments in this image and select a seed pixel in each region. Show the **seed** pixels on the image.
- 3. Use the region growing technique to assign each pixel to one of the regions (compare a pixel's intensity with the average intensity value of the region). Employ 8- connectivity criterion.
- Repeat Steps 2 & 3 with two different number of regions and two different threshold values and comment on the results.

30

Segmentation as Clustering

31

Segmentation as Clustering

- Agglomerative clustering
 - Start with each point in a separate cluster
 - At each iteration, merge two of the "closest" clusters
- Divisive clustering
 - Start with all points grouped into a single cluster
 - At each iteration, split the "largest" cluster

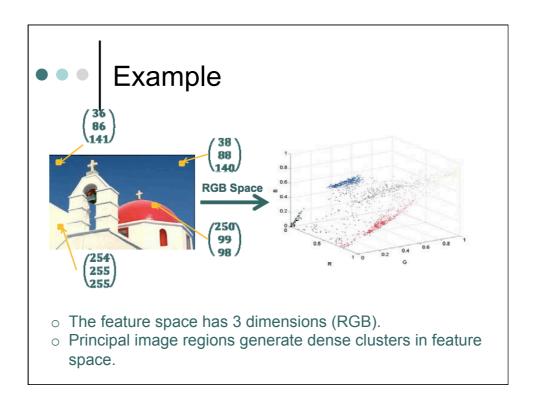
Segmentation as Clustering

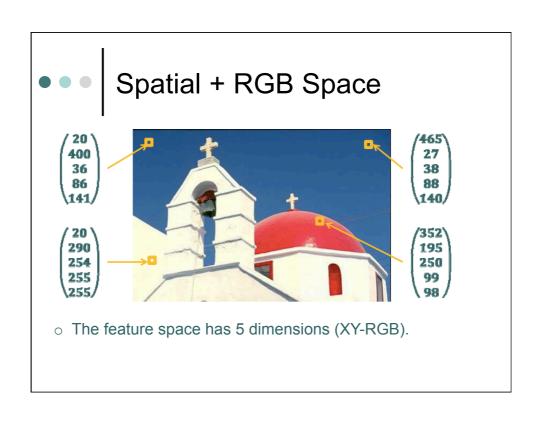
$$v_i = \begin{pmatrix} x_i \\ y_i \\ R_i \\ G_i \\ B_i \\ f_1(x_i, y_i) \\ \vdots \\ f_k(x_i, y_i) \end{pmatrix}$$

- o Select a set of image features; position $\{x, y\}$, color $\{R, G, B\}$, a set of filter responses $\{f_1(x_i, y_i) \mid f_k(x, y)\}$
 - For each pixel p_i form a feature vector v_i

Features in Feature Space

- The vector represents a point in an *N* dimensional feature space.
- The feature vectors for similar pixels should occupy nearby locations in this feature space
- Thus, homogeneous image regions become dense clouds of feature vectors in feature space.

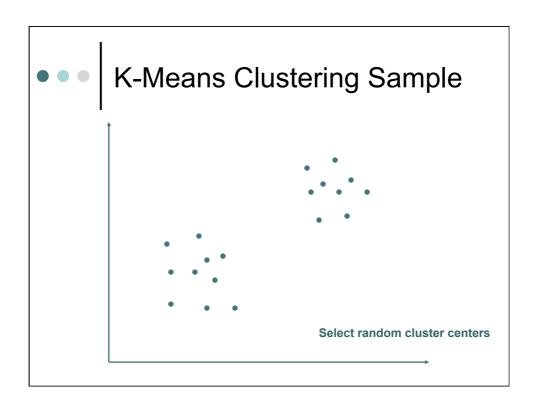


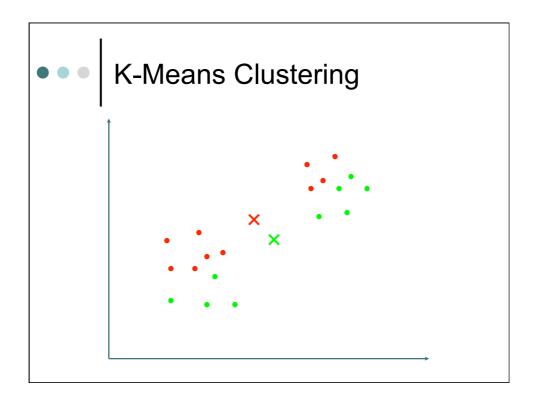


K-Means Clustering

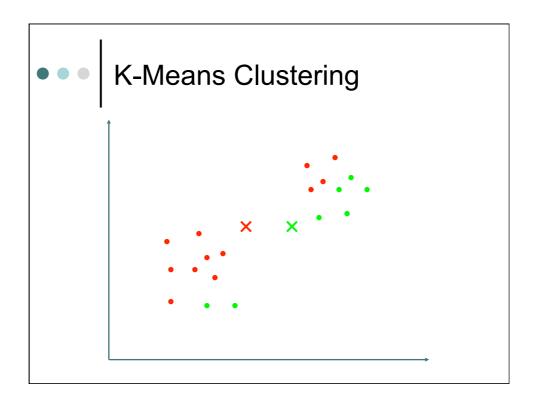
- Compute the feature space vectors
- o Randomly select K cluster centers in feature space
- Iterate until convergence
 - Assign feature vectors to the closest cluster center
 - Re-compute the cluster centers as a (weighted) mean of the feature vectors assigned to each cluster
- Label pixels according to the cluster their feature vectors belong to

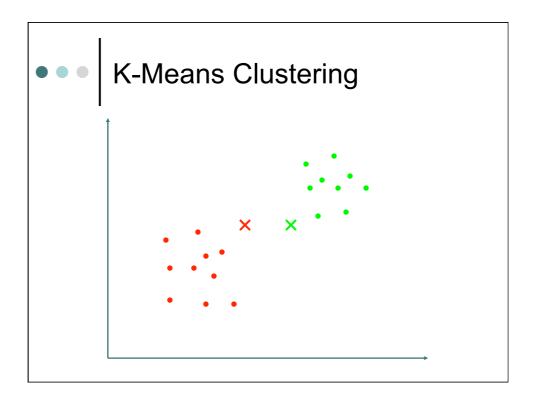
37

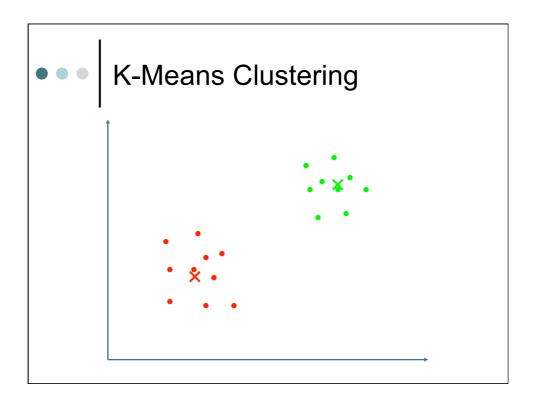


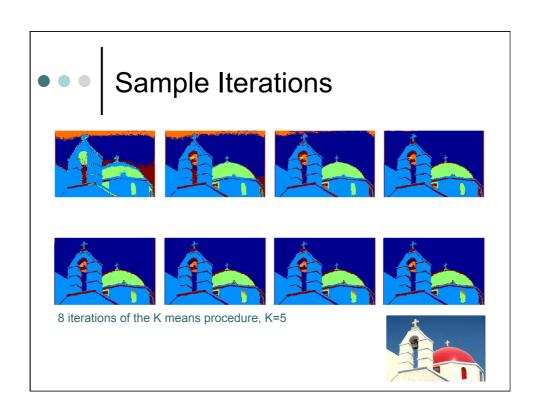


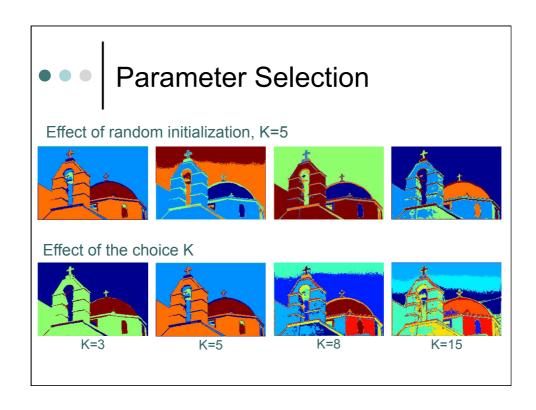












K-Means pros and cons

Pros

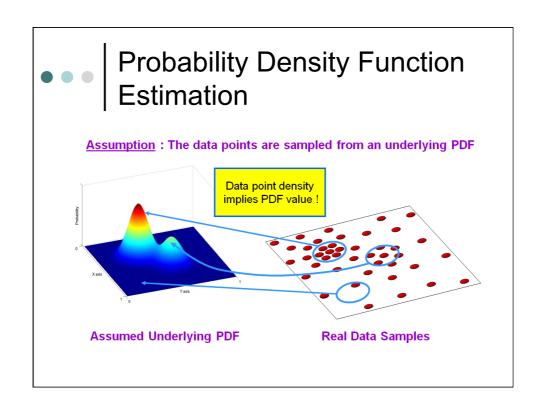
- Simple and fast
- Converges to a local minimum of the error function

Cons

- Need to pick K
- Sensitive to initialization
- Sensitive to outliers
- Only finds "spherical" clusters

Mean Shift

- An advanced and versatile technique for clustering-based segmentation
- Finds modes in a set of data samples, manifesting an underlying probability density function (PDF) in R1N
- Seeks a mode or local maximum of density of a given distribution



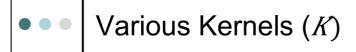


BDF Estimation

$$P(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{n} K(\mathbf{x} - \mathbf{x}_i)$$

Mean Shift: Estimate not PDF but the GRADIENT

$$\nabla P(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{n} \nabla K(\mathbf{x} - \mathbf{x}_i)$$



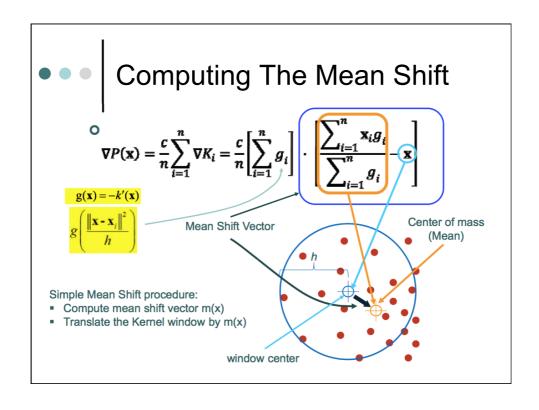
o Epanechnikov Kernel
$$K_E(\mathbf{x}) = \begin{cases} c(1-\|\mathbf{x}\|^2) & \|\mathbf{x}\| \leq 1 \\ 0 & \textit{otherwise} \end{cases}$$

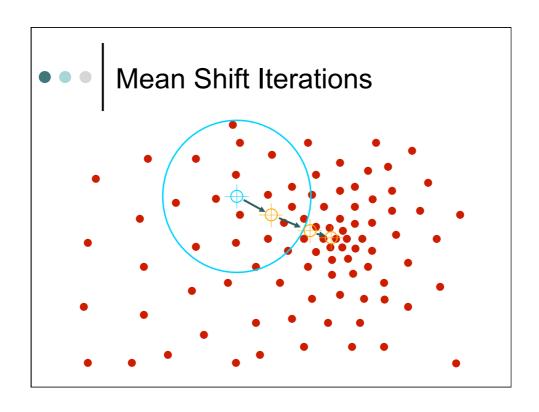
Uniform Kernel

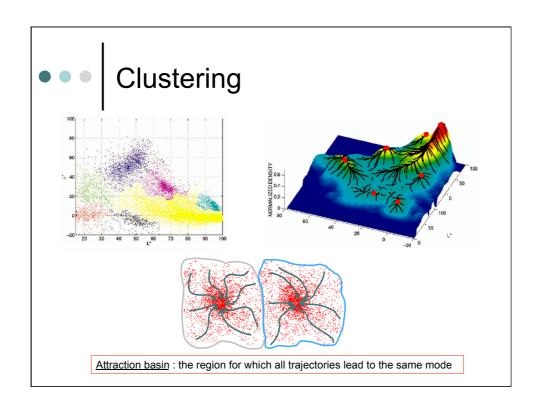
$$K_U(\mathbf{x}) = \begin{cases} c & \|\mathbf{x}\| \le 1 \\ 0 & otherwise \end{cases}$$

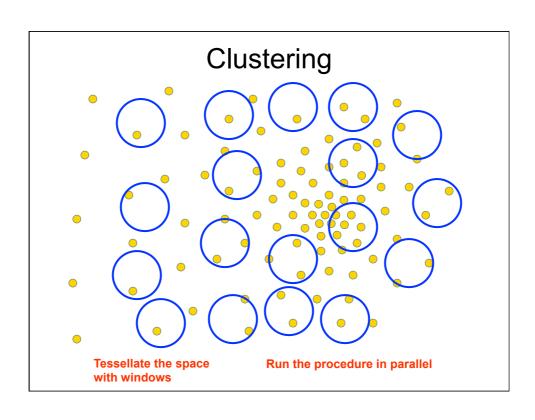
Normal Kernel

$$K_N(\mathbf{x}) = c \cdot \exp\left(-\frac{1}{2}\|\mathbf{x}\|^2\right)$$









Mean Shift Segmentation

- Find features (color, gradients, texture, etc.)
- Initialize windows at individual pixel locations
- Perform mean shift for each window until convergence
- Merge windows that end up near the same "peak" or mode

57

• • • Mean Shift Properties

- Automatic convergence speed the mean shift vector size depends on the gradient itself.
- Near maxima, the steps are small and refined
- Convergence is guaranteed for infinitesimal steps only
- For Uniform Kernel, convergence is achieved in a finite number of steps
- Normal Kernel exhibits a smooth trajectory, but is slower than Uniform Kernel.

Mean Shift Segmentation Examples

Input Image

Smaller search window

Larger search window

• • •

Mean Shift Pros and Cons

Pros

- Does not assume spherical clusters
- Just a single parameter (window size)
- Finds variable number of modes
- Robust to outliers

Cons

- Output depends on window size
- Computationally expensive
- Does not scale well with dimension of feature space

